Zibo Seno Electronic Engineering Co., Ltd.

KBL601 – KBL607

lead-free RoHS 2002/95/EC

6.0A GLASS PASSIVATED BRIDGE RECTIFIER

Features

- Glass Passivated Die Construction
- Low Forward Voltage Drop
- High Current Capability
- High Reliability
- High Surge Current Capability
- Ideal for Printed Circuit Boards

KBL								
Dim	Min	Max						
Α	18.50	19.50						
В	13.70	14.70						
С	15.20	16.30						
D	4.0	6.00						
Е	4.60	5.60						
G	_	2.10						
Н	16.00	_						
J	0.90 Ø	1.30 Ø						
All Dimensions in mm								

Mechanical Data

Case: Molded Plastic

Terminals: Plated Leads Solderable per

MIL-STD-202, Method 208

Polarity: As Marked on Body

Weight: 5.6 grams (approx.)Mounting Position: AnyMarking: Type Number

• Lead Free: For RoHS / Lead Free Version

Maximum Ratings and Electrical Characteristics @T_A=25°C unless otherwise specified

Single Phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	KBL 601	KBL 602	KBL 603	KBL 604	KBL 605	KBL 606	KBL 607	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	V
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	560	700	V
Average Rectified Output Current @T _C = 75°C	lo	6.0							Α
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	175							А
Forward Voltage (per element) @I _F = 3.0A	VFM	1.1						V	
Peak Reverse Current $@T_C = 25^{\circ}C$ At Rated DC Blocking Voltage $@T_C = 100^{\circ}C$	I ID	5.0 1.0					μA mA		
Typical Thermal Resistance (Note 1)	R _θ JC	16							K/W
Operating and Storage Temperature Range	Тj, Tsтg	-65 to +150							°C

Note: 1. Thermal resistance junction to case per element mounted on PC board with 13.0x13.0x0.03mm thick land areas.

Zibo Seno Electronic Engineering Co., Ltd.

KBL601 – KBL607

Fig. 1 Forward Current Derating Curve

Fig. 2 Typical Forward Characteristics, per element

Fig. 3 Max Non-Repetitive Peak Fwd Surge Current

Fig. 4 Typical Reverse Characteristics, per element